(5y^2-3y-7)+(4y^2-6y+1)=0

Simple and best practice solution for (5y^2-3y-7)+(4y^2-6y+1)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5y^2-3y-7)+(4y^2-6y+1)=0 equation:


Simplifying
(5y2 + -3y + -7) + (4y2 + -6y + 1) = 0

Reorder the terms:
(-7 + -3y + 5y2) + (4y2 + -6y + 1) = 0

Remove parenthesis around (-7 + -3y + 5y2)
-7 + -3y + 5y2 + (4y2 + -6y + 1) = 0

Reorder the terms:
-7 + -3y + 5y2 + (1 + -6y + 4y2) = 0

Remove parenthesis around (1 + -6y + 4y2)
-7 + -3y + 5y2 + 1 + -6y + 4y2 = 0

Reorder the terms:
-7 + 1 + -3y + -6y + 5y2 + 4y2 = 0

Combine like terms: -7 + 1 = -6
-6 + -3y + -6y + 5y2 + 4y2 = 0

Combine like terms: -3y + -6y = -9y
-6 + -9y + 5y2 + 4y2 = 0

Combine like terms: 5y2 + 4y2 = 9y2
-6 + -9y + 9y2 = 0

Solving
-6 + -9y + 9y2 = 0

Solving for variable 'y'.

Factor out the Greatest Common Factor (GCF), '3'.
3(-2 + -3y + 3y2) = 0

Ignore the factor 3.

Subproblem 1

Set the factor '(-2 + -3y + 3y2)' equal to zero and attempt to solve: Simplifying -2 + -3y + 3y2 = 0 Solving -2 + -3y + 3y2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -0.6666666667 + -1y + y2 = 0 Move the constant term to the right: Add '0.6666666667' to each side of the equation. -0.6666666667 + -1y + 0.6666666667 + y2 = 0 + 0.6666666667 Reorder the terms: -0.6666666667 + 0.6666666667 + -1y + y2 = 0 + 0.6666666667 Combine like terms: -0.6666666667 + 0.6666666667 = 0.0000000000 0.0000000000 + -1y + y2 = 0 + 0.6666666667 -1y + y2 = 0 + 0.6666666667 Combine like terms: 0 + 0.6666666667 = 0.6666666667 -1y + y2 = 0.6666666667 The y term is -1y. Take half its coefficient (-0.5). Square it (0.25) and add it to both sides. Add '0.25' to each side of the equation. -1y + 0.25 + y2 = 0.6666666667 + 0.25 Reorder the terms: 0.25 + -1y + y2 = 0.6666666667 + 0.25 Combine like terms: 0.6666666667 + 0.25 = 0.9166666667 0.25 + -1y + y2 = 0.9166666667 Factor a perfect square on the left side: (y + -0.5)(y + -0.5) = 0.9166666667 Calculate the square root of the right side: 0.957427108 Break this problem into two subproblems by setting (y + -0.5) equal to 0.957427108 and -0.957427108.

Subproblem 1

y + -0.5 = 0.957427108 Simplifying y + -0.5 = 0.957427108 Reorder the terms: -0.5 + y = 0.957427108 Solving -0.5 + y = 0.957427108 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '0.5' to each side of the equation. -0.5 + 0.5 + y = 0.957427108 + 0.5 Combine like terms: -0.5 + 0.5 = 0.0 0.0 + y = 0.957427108 + 0.5 y = 0.957427108 + 0.5 Combine like terms: 0.957427108 + 0.5 = 1.457427108 y = 1.457427108 Simplifying y = 1.457427108

Subproblem 2

y + -0.5 = -0.957427108 Simplifying y + -0.5 = -0.957427108 Reorder the terms: -0.5 + y = -0.957427108 Solving -0.5 + y = -0.957427108 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '0.5' to each side of the equation. -0.5 + 0.5 + y = -0.957427108 + 0.5 Combine like terms: -0.5 + 0.5 = 0.0 0.0 + y = -0.957427108 + 0.5 y = -0.957427108 + 0.5 Combine like terms: -0.957427108 + 0.5 = -0.457427108 y = -0.457427108 Simplifying y = -0.457427108

Solution

The solution to the problem is based on the solutions from the subproblems. y = {1.457427108, -0.457427108}

Solution

y = {1.457427108, -0.457427108}

See similar equations:

| (x-1)(5-x^2)=0 | | x+3+3x+5x+6=180 | | 30y+2=26 | | d/dy(ln(2y)) | | 11=-6v-1 | | 13.2=-16t^2+24t+16.4 | | cso(x)=-0.59 | | 2(x-4)=4(x+7)-18 | | z/8-8=4 | | 2x-1=11x-47 | | -9=x-17 | | Y^2+3y-15=3y+1 | | 14-9/8-3 | | 14-7x=-4(3x+9) | | 2p^2-20p-5=0 | | 2t^2+11t=6 | | e^(1/6)x | | 3.2x-7.4= | | 5-2x/4=3x-1 | | 2/3f=8 | | 7y-21-9y+31= | | -3r+1=7 | | 5-4+7x+1=6x+3 | | 2(x-2)-4x=12 | | 7x-3x+7=x-4+11 | | 4x+9=11-3x | | 7x^2-1(-50x-48)=0 | | 6x^2-17x+13=20-32 | | 41/10 | | 7x^2-(-50x-48)=0 | | P+2q=5 | | ln(x-2)+ln(2x+5)=ln(x^2+5x-5) |

Equations solver categories